4.7 Article

Shakedown-reliability based fatigue strength prediction of parts fabricated by directed energy deposition considering the microstructural inhomogeneities

Journal

EUROPEAN JOURNAL OF MECHANICS A-SOLIDS
Volume 103, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.euromechsol.2023.105170

Keywords

Design for additive manufacturing (DfAM); Shakedown; Reliability; Micropores; Multiscale analysis

Categories

Ask authors/readers for more resources

This paper develops a multiscale numerical approach to predict the failure probability of additive manufacturing (AM) structures subjected to time-varied loadings. The approach combines statistical homogenization, shakedown analyses, and reliability methods to consider the influence of microstructural features on load bearing capacity. Through case studies on exemplary structures and different material randomness assumptions, the robustness of the results is confirmed and the mechanism of how micropores influence structural reliability is explained.
For mechanical components made by additive manufacturing (AM) techniques such as directed energy deposition (DED), micropores and other defects prevalently exist in the microstructure and they significantly reduce the reliability of these parts. To allow the influence of these microstructural features over the load bearing capacity to be considered in the design stage of AM structures, in the present paper we developed a multiscale numerical approach. The goal of this approach is to predict the failure probability of AM structures subjected to time-varied loadings, and it is realized through combining statistical homogenization, shakedown analyses, and reliability methods such as first-order reliability method and Monte Carlo simulation. Based on this strategy, we employed statistics of material parameters obtained from micromechanical models as inputs, implemented numerical tools and applied them to two exemplary structures, the plate with a hole and an aircraft bracket. Through a series of case studies carried out using different methods and under different assumptions of material randomness, the paper confirmed the robustness of the derived results and explained the mechanism of how micropores influence the structural reliability. The method developed in this paper can be a viable means for the design and optimization of metallic and metal matrix composite structures produced by AM techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available