4.7 Article

Effects of sinapic acid on lead acetate-induced oxidative stress, apoptosis and inflammation in testicular tissue

Journal

ENVIRONMENTAL TOXICOLOGY
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1002/tox.23900

Keywords

apoptosis; inflammation; lead acetate; oxidative stress; sinapic acid

Ask authors/readers for more resources

This study aimed to determine the effects of lead acetate (PbAc) and sinapic acid (SNP) on oxidative stress, apoptosis, inflammation, sperm quality, and histopathology in rat testicular tissue. PbAc administration increased oxidative stress and inflammation parameters, while SNP treatment inhibited these changes and improved sperm quality. Overall, PbAc caused histopathological damage and impaired spermatogenesis, whereas SNP treatment showed protective effects.
In this study, the effect of lead acetate (PbAc) and sinapic acid (SNP) administration on oxidative stress, apoptosis, inflammation, sperm quality and histopathology in testicular tissue of rats was tried to be determined. PbAc was administered at a dose of 30 mg/kg/bw for 7 days to induce testicular toxicity in rats. Oral doses of 5 and 10 mg/kg/bw SNP were administered to rats for 7 days after PbAc administration. According to our findings, while PbAc administration increased MDA content in rats, it decreased GPx, SOD, CAT activity and GSH content. NF-kB, IL-1 & beta;, TNF-& alpha;, and COX-2, which are among the inflammation parameters that increased due to PbAc, decreased with the administration of SNP. Nrf2, HO-1, and NQO1 mRNA transcript levels decreased with PbAc, but SNP treatments increased these mRNA levels in a dose-dependent manner. RAGE and NLRP3 gene expression were upregulated in PbAc treated rats. MAPK14, MAPK15, and JNK relative mRNA levels decreased with SNP treatment in PbAc treated rats. While the levels of apoptosis markers Bax, Caspase-3, and Apaf-1 increased in rats treated with PbAc, the level of Bcl-2 decreased, but SNP inhibited this apoptosis markers. PbAc caused histopathological deterioration in testis tissue and negatively affected spermatogenesis. When the sperm quality was examined, the decrease in sperm motility and spermatozoon density caused by PbAc, and the increase in the ratio of dead and abnormal spermatozoa were inhibited by SNP. As a result, while PbAc increased apoptosis and inflammation by inducing oxidative stress in testicles, SNP treatment inhibited these changes and increased sperm quality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available