4.7 Article

Insights in MICP dynamics in urease-positive Staphylococcus sp. H6 and Sporosarcina pasteurii bacterium

Journal

ENVIRONMENTAL RESEARCH
Volume 234, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.116588

Keywords

Microbial ureases; MICP; Atomic force microscopy; Bioconsolidation; Staphylococcus; Sporosarcina

Ask authors/readers for more resources

Microbially induced calcite precipitation (MICP) is an efficient and eco-friendly technique that has been applied in various fields. This study aimed to analyze the MICP process of Sporosarcina pasteurii and Staphylococcus sp. H6 and showed the possibility of using Staphylococcus sp. H6 for MICP. The results demonstrated that Staphylococcus sp. H6 precipitated a lower amount of Ca2+ ions compared to S. pasteurii, but both strains showed bioconsolidation of sand particles and reduced water permeability.
Microbially induced calcite precipitation (MICP) is an efficient and eco-friendly technique that has attracted significant interest for resolving various problems in the soil (erosion, improving structural integrity and water retention, etc.), remediation of heavy metals, production of self-healing concrete or restoration of different concrete structures. The success of most common MICP methods depends on microorganisms degrading urea which leads to the formation of CaCO3 crystals. While Sporosarcina pasteurii is a well-known microorganism for MICP, other soil abundant microorganisms, such as Staphylococcus bacteria have not been thoroughly studied for its efficiency in bioconsolidation though MICP is a very important proccess which can ensure soil quality and health. This study aimed to analyze MICP process at the surface level in Sporosarcina pasteurii and a newly screened Staphylococcus sp. H6 bacterium as well as show the possibility of this new microorganism to perform MICP. It was observed that Staphylococcus sp. H6 culture precipitated 157.35 & PLUSMN; 3.3 mM of Ca2+ ions from 200 mM, compared to 176 & PLUSMN; 4.8 mM precipitated by S. pasteurii. The bioconsolidation of sand particles was confirmed by Raman spectroscopy and XRD analysis, which indicated the formation of CaCO3 crystals for both Staphylococcus sp. H6 and S. pasteurii cells. The water-flow test suggested a significant reduction in water permeability in bioconsolidated sand samples for both Staphylococcus sp. H6 and S. pasteurii. Notably, this study provides the first evidence that CaCO3 precipitation occurs on the surface of Staphylococcus and S. pasteurii cells within the initial 15-30 min after exposure to the biocementation solution. Furthermore, Atomic force microscopy (AFM) indicated rapid changes in cell roughness, with bacterial cells becoming completely coated with CaCO3 crystals after 90 min incubation with a biocementation solution. To our knowledge, this is the first time where atomic force microscopy was used to visualize the dynamic of MICP on cell surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available