4.7 Review

Green and sustainable synthesis of nanomaterials: Recent advancements and limitations

Journal

ENVIRONMENTAL RESEARCH
Volume 231, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.116316

Keywords

Green synthesis; Metal nanoparticles; Nobel metal NPs; Toxicity; Metal oxide NPs

Ask authors/readers for more resources

Nanomaterials are widely used in various research fields including engineering, biomedical science, energy, and environment. Green synthesis of nanoparticles, using natural reagents instead of hazardous chemicals, is a promising and environmentally friendly approach that reduces the carbon footprint and harm to the environment and human health. Green synthesis of nanomaterials offers advantages such as low cost, minimal pollution, and safety, and nanoparticles possess enhanced properties that make them highly attractive for catalysis, energy storage, optics, biological labeling, and cancer therapy.
Nanomaterials have been widely used in diverse fields of research such as engineering, biomedical science, energy, and environment. At present, chemical and physical methods are the main methods for large-scale synthesis of nanomaterials, but these methods have adverse effects on the environment, and health issues, consume more energy, and are expensive. The green synthesis of nanoparticles is a promising and environmentally friendly approach to producing materials with unique properties. Natural reagents such as herbs, bacteria, fungi, and agricultural waste are used in the green synthesis of nanomaterials instead of hazardous chemicals and reduce the carbon footprint of the synthesis process. Green synthesis of nanomaterials is highly beneficial compared to traditional methods due to its low cost, negligible pollution level, and safety for the environment and human health. Nanoparticles possess enhanced thermal and electrical conductivity, catalytic activity, and biocompatibility, making them highly attractive for a range of applications, including catalysis, energy storage, optics, biological labeling, and cancer therapy. This review article provides a comprehensive overview of recent advancements in the green synthesis routes of different types of nanomaterials, including metal oxide-based, inert metal-based, carbon-based, and composite-based nanoparticles. Moreover, we discuss the various applications of nanoparticles, emphasizing their potential to revolutionize fields such as medicine, electronics energy, and the environment. The factors affecting the green synthesis of nanomaterials, and their limitations are also pointed out to decide the direction of this research field, Overall, this paper highlights the importance of green synthesis in promoting sustainable development in various industries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available