4.7 Article

Novel insight into ammonium, phosphate, and iron(II) dynamics in the sediment porewater of a constructed wetland under artificial aeration through the diffusive equilibrium in thin films technique

Journal

ENVIRONMENTAL RESEARCH
Volume 236, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2023.116746

Keywords

Diffusive equilibrium in thin films (DET); Constructed wetland; Porewater; Aeration; Domestic effluent

Ask authors/readers for more resources

The analysis of porewater concentrations in constructed wetland sediments using DET techniques revealed the sources and sinks of nutrients and their impact on water quality. Aeration of the water column improved oxygen levels and redox potential in the sediment, leading to decreased ammonium concentrations but increased phosphate and ferrous iron concentrations. Nitrate concentrations were below the detection limit, indicating limited nitrification-denitrification processes. The results highlight the usefulness of DET techniques in quantifying nutrient concentrations in constructed wetlands under different environmental conditions.
The analysis of porewater concentrations in constructed wetland sediments could help to understand biogeochemical processes, the sources and sinks of nutrients, and their effect on overlying water quality. In this study, we measured high-resolution porewater concentration profiles of ammonium (NH4+-N), nitrate (NO3N), phosphate (PO43--P), and ferrous iron (Fe(II)) in-situ in the Laratinga constructed wetland in Mount Barker (South Australia) using diffusive equilibration in thin films (DET) techniques. Measurements were taken under light and dark conditions, and non-aerated and aerated conditions to determine the effect on sediment porewater nutrient concentrations. Baseline surface water nutrient concentrations (NH4+-N > 36 mg L-1, PO43--P > 0.43 mg L-1) greatly exceeded water quality guideline criteria. Aeration of the water column alleviated night-time hypoxic conditions (i.e. dissolved oxygen increased from a minimum of 0.7 mg L-1 to a minimum of 4 mg L-1), and increased the redox potential in the sediment. Significant differences were present for NH4+-N, PO43--P, and Fe(II) concentrations with depth in the sediment. Ammonium concentrations in the sediment reduced under aerated conditions, presumably due to enhanced nitrification. However it was observed that POa -P and Fe(II) concentrations increased significantly with aeration, especially under dark conditions, and were strongly correlated (R2>0.8). This was not what was hypothesised and points to complex interactions between Fe and P in the sediment. Nitrate concentrations in the sediment were below the detection limit (<0.9 mg L-1) which suggests limited nitrification-denitrification is occurring. Overall the results suggest that DET techniques are useful tools for quantifying porewater concentrations of nutrients in constructed wetlands under various environmental conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available