4.7 Article

Expeditious profiling of polycyclic aromatic hydrocarbons transport and obstruction mechanisms in crop xylem sap proteins via proteomics and molecular docking

Journal

ENVIRONMENTAL POLLUTION
Volume 340, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2023.122854

Keywords

Hydrophobic organic contaminants; Plant xylem translocation; Differentially expressed proteins; Protein-ligand interactions; Regulation.

Ask authors/readers for more resources

This study investigates the protein targets and protein-ligand interactions related to PAH contamination in crop xylem sap using computational tools. The results show that phenanthrene has a more pronounced effect on the xylem sap proteins of maize and wheat, with maize DEPs associated with lipid biosynthesis and wheat DEPs exhibiting an increase in ABC transporters. This study provides insights into the regulation and movement of PAHs within plant xylem.
Polycyclic aromatic hydrocarbons (PAHs) pose significant environmental risks due to their toxicity and carcinogenic properties. This research seeks to pinpoint protein targets in crop xylem sap related to PAH contamination and delve into their protein-ligand interactions using computational tools. Proteomic assessment revealed differentially expressed proteins (DEPs), which were subjected to virtual high-throughput screening. Notably, the phenanthrene's influence on xylem sap proteins in maize and wheat was more pronounced than in soybean, with DEPs expression peak at 24 h post-treatment. Maize DEPs were predominantly associated with lipid biosynthesis. Phenanthrene impacted cell membrane hydrophobicity, limiting PAH adsorption and decreasing its concentration in maize xylem sap. Wheat DEPs exhibited an increase in ABC transporters after 24 h of phenanthrene exposure. ABC transporters interacted with stress-responsive proteins like C6TIY1-Co-chaperone p23 and others that either facilitate or inhibit PAH transport, including Indeno[1,2,3-cd]Pyrene and C6TIY1-Co-chaperone protein p23. Both maize and wheat created high-affinity complexes between specific proteins and PAHs, influencing their transport. This study provides insights into the mechanisms of PAH regulation and movement within plant xylem.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available