4.7 Article

Mitigation of benzoic acid-driven autotoxicity in waste nutrient solution using O3 and O3/H2O2 treatments: Seed germination and root growth of Lactuca sativa L.

Journal

ENVIRONMENTAL POLLUTION
Volume 331, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2023.121930

Keywords

Hydroponic; Waste nutrient solution (WNS); Benzoic acid (BA); Autotoxicity; O3 treatment; O3

Ask authors/readers for more resources

In this study, the effects of O3 and O3/H2O2 oxidation treatment on waste nutrient solution were investigated to mitigate BA-driven autotoxicity. The results showed that the O3/H2O2 treatment significantly increased BA degradation and reduced GI and RI. The optimal treatment condition was suggested to be BA125 (1-8).
Benzoic acid (BA), a secondary metabolite released through root exudates, is considered to be the most common inhibitor that leads to plant autotoxicity, even at low concentrations in closed hydroponic systems. In this study, to mitigate BA-driven autotoxicity, the effects of O3 and O3/H2O2 oxidation treatment (O3 concentration: 1, 2, 4, 8 mg L-1, H2O2 concentration: 4, 8 mg L-1) on waste nutrient solution (WNS) were investigated in terms of BA degradation, the rate of germination inhibition (GI), and the rate of root growth inhibition (RI). In the case of O3 treatment, the BA degradation rate improved up to 14.1% as the O3 concentration increased, while alleviation of GI was insignificant (94.6-100%), confirming that a single O3 treatment was unsuitable for mitigating auto -toxicity. On the other hand, O3/H2O2 treatment increased BA degradation by up to 24.8%, thereby significantly reducing GI (up to 7.69%) and RI (up to 0.88%). Both the highest BA mineralization rate and phytotoxicity mitigation was observed at BA125 (4-4) (BA mineralization: 16.7%, GI: 12.82%, RI: 11.69%) and BA125 (1-8) (BA mineralization: 17.7%, GI: 7.69%, RI: 0.88%) at each H2O2 concentration. In addition, the operating costs were evaluated by a chemical and electricity cost analysis at the different treatments. As a result, the operating costs of BA125 (4-4) and BA125 (1-8) were calculated to be 0.40 and 0.42 $ L-1 mg- 1 of mineralized BA, respectively. After consideration of the mineralization rate, autotoxicity mitigation, and operating cost, BA125 (1-8) was suggested for the optimal treatment condition and our findings would contribute to the alleviation of BA-driven autotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available