4.7 Article

Can warming accelerate the decline of Odonata species in experimental paddies due to insecticide fipronil exposure?

Journal

ENVIRONMENTAL POLLUTION
Volume 341, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2023.122831

Keywords

Agroecosystem; Climate change; Ecological impacts; Field mesocosm; Multiple stressors; Synergistic effect

Ask authors/readers for more resources

Systemic insecticides and rising temperatures have combined effects on the abundance of Odonata nymphs in paddy fields. The standalone effect of insecticide exposure decreased the Odonata community, while nymphs decreased synergistically with temperature rise in paddy water. However, the impacts of each stressor alone varied among species.
Systemic insecticides are one of the causes of Odonata declines in paddy fields. Since rising temperatures associated with global warming can contribute to strengthen pesticide toxicity, insecticide exposures under increasing temperatures may accelerate the decline of Odonata species in the future. However, the combined effects of multiple stressors on Odonata diversity and abundance within ecosystems under various environmental conditions and species interactions are little known. Here, we evaluate the combined effects of the insecticide fipronil and warming on the abundance of Odonata nymphs in experimental paddies. We show that the standalone effect of the insecticide exposure caused a significant decrease in abundance of the Odonata community, while nymphs decreased synergistically in the combined treatments with temperature rise in paddy water. However, impacts of each stressor alone were different among species. This study provides experimental evidence that warming could accelerate a reduction in abundance of the Odonata community exposed to insecticides (synergistic effect), although the strength of that effect might vary with the community composition in targeted habitats, due mainly to different susceptibilities among species to each stressor. Community-based monitoring in actual fields is deemed necessary for a realistic evaluation of the combined effects of multiple stressors on biodiversity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available