4.7 Article

Determining the Effect of Cation (Ti/Zr) Doping in Bismuth Oxide for Electrochemical CO2 Reduction to Formic Acid: A DFT Study

Journal

ENERGY & FUELS
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.3c01722

Keywords

-

Ask authors/readers for more resources

First-principles-based density functional theory (DFT) calculations were used to investigate the electrochemical CO2 reduction (ECR) activity of cation-doped Bi2O3. The ECR reaction over pure and doped Bi2O3 (100) surfaces was studied, and Gibbs free energy diagrams of HCOOH formation via COOH and HCOO pathways were demonstrated. Doping can alter the rate-determining step and reduce the Gibbs free energy, resulting in enhanced CO2 reduction activity on the TiZr-Bi2O3 surface.
First-principles-based density functional theory (DFT)calculationswere used to explore the electrochemical CO2 reduction(ECR) activity of cation-doped Bi2O3. We studiedthe ECR reaction over pure and doped Bi2O3 (100)surfaces and demonstrated Gibbs free energy diagrams of HCOOH formationvia COOH and HCOO pathways. Compared with pure bismuth oxide, dopingcan alter the rate-determining step and reduce the Gibbs free energyfrom 2.98 to 0.11 eV. The CO2 reduction activity was foundto be most productive on the TiZr-Bi2O3 surface with onset potentials of -0.23 and 0.55 V via theCOOH and HCOO pathways, respectively. The probability of CO formationthrough the ECR reaction was also investigated using Gibbs free energycalculations, and it was found that Bi2O3, Ti-Bi2O3, Zr-Bi2O3, andTiZr-Bi2O3 displayed insufficient ECRactivity to produce CO. We also compared the selectivity of the ECRreaction and the hydrogen evolution reaction (HER) to demonstratethe practicality of the electrocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available