4.7 Article

Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell

Journal

ENERGY
Volume 278, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.127982

Keywords

High temperature proton exchange membrane; fuel cells; Taguchi experimental design; Grey relational analysis; Analysis of variance

Ask authors/readers for more resources

In this study, Taguchi experimental design, grey relational analysis, and analysis of variance were combined to investigate the impact of various factors on the performance of high-temperature proton exchange membranes fuel cell (HT-PEMFC). The results showed that the membrane thickness had the most significant contribution to the power density, while the anode stoichiometry ratio had the most significant contribution to the system efficiency and exergy efficiency of HT-PEMFC. This study provides important reference and valuable guidance for designing HT-PEMFC.
In order to reveal the quantitative impacts of multi-factors on the performance of high-temperature proton exchange membranes fuel cell (HT-PEMFC), in this work, Taguchi experimental design, grey relational analysis, and analysis of variance are combined to explore the influence of working temperature, working pressure, anode stoichiometric ratio, GDL porosity, and membrane thickness on power density, system efficiency, and exergy efficiency of HT-PEMFC. Firstly, by Taguchi experimental design, the highest power density, system efficiency and exergy efficiency of HT-PEMFC arrives at 0.6895 W cm-2, 38.19% and 48.65%, respectively. Secondly, based on grey relational analysis and analysis of variance, the impact order of multi-factors on power density, system efficiency, and exergy efficiency of HT-PEMFC is determined. Finally, it is discovered that the membrane thickness makes the most significant contribution on the power density of HT-PEMFC, while the anode stoichiometry ratio makes the most significant contribution on the system efficiency and exergy efficiency of HTPEMFC. This work provides a significant reference and valuable guidance for designing HT-PEMFC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available