4.7 Article

A novel hybrid pyroelectric-Stirling engine power generation system

Journal

ENERGY
Volume 282, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2023.128913

Keywords

Pyroelectric; Regenerator; Stirling engine; Hybrid system; Power production

Ask authors/readers for more resources

This paper demonstrates the technical feasibility of a novel hybrid Stirling Engine, coupled with inserted pyroelectric generators in its thermal regenerator, to produce extra power through the pyroelectric effect and increase engine performance.
Temperature fluctuations in the thermal regenerator of Stirling Engine SE occur at relatively high frequencies, making them amenable to direct harvesting using Pyroelectric materials. This paper demonstrates the technical feasibility of a novel hybrid Stirling Engine (SE), coupled with inserted pyroelectric generators in its thermal regenerator, to produce extra power through the pyroelectric effect and increase engine performance. Theoretical models have been constructed to analyze the performance of the pyroelectric-Stirling engine (P-SE) system and determine its advantages over conventional SEs. The transient thermal behavior of the pyroelectric regenerator is modeled by subdividing it into multiple lumped sub-regenerators. Replacing the metal regenerator in a conventional SE at 750 K hot chamber temperature with a pyroelectric regenerator increased power production by 2.9%. Furthermore, at 25 Hz fluctuation, 15 mm regenerator length, and regenerator porosity of 0.6, the system efficiency of the hybrid P-SE system increased by 0.5% and 3.5% compared to systems using steel and aluminum regenerators, respectively. Also, the P-SE system operating at 25 Hz yields the highest combined efficiency of 49.8% at the regenerator porosity of 0.6.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available