4.5 Article

Assessment of a Francis Micro Hydro Turbine Performance Installed in a Wastewater Treatment Plant

Journal

ENERGIES
Volume 16, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/en16207214

Keywords

turbines; hydropower plants; wastewater systems; energy potential; renewable energy sources; micro hydro turbine; Poland

Categories

Ask authors/readers for more resources

The purpose of this research was to investigate the hydroelectric potential of wastewater treatment plants. The Francis turbine, a key component of the energy generation system, was analyzed for its performance parameters. The results showed that the turbine achieved its highest efficiency with increased flow rates and maximized production with more frequent, lower flow rates throughout the year. The use of existing infrastructure in wastewater treatment plants can reduce construction costs and environmental impacts.
The purpose of this research work was to examine the hydroelectric potential of wastewater treatment plants by harnessing the kinetic and/or potential energy of treated wastewater for electricity generation. Such a concept encapsulates the essence of renewable energy and resonates with international sustainable development mandates and climate change adaptation strategies. The primary objective was to analyze the performance parameters of the Francis turbine, a key component of this energy generation system. An experimental analysis encompassed model tests on the Francis turbine, simulating varied flow conditions using the GUNT turbine. Additionally, historical data from the Torun Wastewater Treatment Plant (WWTP) 2018 annual wastewater discharge were employed to validate the findings and shed light on real-world applications. The tested efficiency of the Francis turbine peaked at 64.76%, notably below the literature-reported 80%. The turbine system's overall efficiency was approximately 53%, juxtaposed against the theoretical value of 66.35%. With respect to the Torun WWTP data, the turbine's power output was highest at 24.82 kW during maximum wastewater flow, resulting in a power production of 150.29 MWh per year. The observed turbine efficiencies were consistent with the previously documented range of 30% to 96%. The turbine displayed optimal outputs during heightened flow rates and maximized production at more frequent, lower flow rates throughout the year. Implementing such turbines in wastewater treatment plants not only aligns with global renewable energy goals but also boasts lower construction costs and environmental impacts, primarily due to the utilization of existing infrastructure. Furthermore, wastewater flow consistency counters the seasonal variability seen in conventional water treatment plants. These findings pave the way for more energy-efficient design recommendations for turbines within wastewater treatment and hydropower plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available