4.5 Article

Co-Combustion of Hydrogen with Diesel and Biodiesel (RME) in a Dual-Fuel Compression-Ignition Engine

Journal

ENERGIES
Volume 16, Issue 13, Pages -

Publisher

MDPI
DOI: 10.3390/en16134892

Keywords

dual-fuel; diesel; hydrogen; RME; combustion; emission

Categories

Ask authors/readers for more resources

This paper investigates the co-combustion of hydrogen with diesel fuel and biodiesel in a compression-ignition engine at maximum load. The study reveals that co-combusting hydrogen with diesel fuel and biodiesel has minimal impact on ignition delay but reduces combustion time, especially when using biodiesel. The highest energy efficiency for the dual-fuel engine is achieved with a 12% hydrogen content, with greater efficiency gains observed when powered by biodiesel. Hydrogen as a fuel in compression ignition engines shows favorable outcomes for CO, CO2, and soot emissions, but increases in NO and HC emissions.
The utilization of hydrogen for reciprocating internal combustion engines remains a subject that necessitates thorough research and careful analysis. This paper presents a study on the co-combustion of hydrogen with diesel fuel and biodiesel (RME) in a compression-ignition piston engine operating at maximum load, with a hydrogen content of up to 34%. The research employed engine indication and exhaust emissions measurement to assess the engine's performance. Engine indication allowed for the determination of key combustion stages, including ignition delay, combustion time, and the angle of 50% heat release. Furthermore, important operational parameters such as indicated pressure, thermal efficiency, and specific energy consumption were determined. The evaluation of dual-fuel engine stability was conducted by analyzing variations in the coefficient of variation in indicated mean effective pressure. The increase in the proportion of hydrogen co-combusted with diesel fuel and biodiesel had a negligible impact on ignition delay and led to a reduction in combustion time. This effect was more pronounced when using biodiesel (RME). In terms of energy efficiency, a 12% hydrogen content resulted in the highest efficiency for the dual-fuel engine. However, greater efficiency gains were observed when the engine was powered by RME. It should be noted that the hydrogen-powered engine using RME exhibited slightly less stable operation, as measured by the COVIMEP value. Regarding emissions, hydrogen as a fuel in compression ignition engines demonstrated favorable outcomes for CO, CO2, and soot emissions, while NO and HC emissions increased.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available