4.6 Article

Recent advances in Bio-mass by electrochemically strategies generated hydrogen gas production: Environmentally sustainable technologies innovation

Journal

ELECTROCHIMICA ACTA
Volume 474, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2023.143451

Keywords

Hydrogenation; Biomass; Renewable; Photovoltaic; Photoelectrochemical; Semiconductors

Ask authors/readers for more resources

Green hydrogen has the potential to transition to a pollution-free energy infrastructure. This study proposes a solution to produce hydrogen during the photoelectrochemical process, offering greater stability and control over chemical reactions. Techno-economic assessments show the efficiency and economic feasibility of co-producing value-added chemicals to enhance green hydrogen production.
The potential of green hydrogen as in transitioning to a free pollution energy infrastructure. Green hydrogen gas is produced using renewable energy sources, typically through the process of electrolysis, and is considered environment friendly because it does not emit carbon dioxide when produced. While solar water redox reaction using photochemical and electrochemical methods is an elegant way to harvest green hydrogen production, it can be challenging to make this process economically competitive, especially for low-cost products like hydrogen. To address this challenge, the proposes a solution, which is to produce hydrogen during the photoelectrochemical process. In this demonstration of the (photo)electrochemically generated hydrogen (H-2) for the homogeneous and hydrogenation. The coupled process offers greater stability compared to direct electrochemical hydrogenation and it provides more flexibility in controlling the chemical reactions involved. Overpotential refers to the extra energy required to drive a reaction and coupling the processes can help minimize this overpotential. An overall similar to 58% conversion of the produced hydrogen is confirmed for this process, indicating the efficiency of the approach. Additionally, a techno-economic assessment of the proa strategy to make green hydrogen production economically competitive by co-producing value-added chemicals, using ascorbic acid. This approach enhances the economic feasibility of green hydrogen production but also adds value to the process by producing valuable chemical products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available