4.7 Article

Blood-cerebrospinal fluid barrier permeability of metals/metalloids and its determinants in pediatric patients

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 266, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2023.115599

Keywords

Blood-cerebrospinal fluid barrier; Cerebrospinal fluid; Metal/metalloid; BCSFB permeability

Ask authors/readers for more resources

Concerns about the adverse effects of metal/metalloids exposure on brain development and neurological disorders among children are increasing. This study investigated the transport patterns of 16 metals/metalloids across the blood-cerebrospinal fluid barrier (BCSFB) in children, and found that certain biomedical parameters could influence the transformation of metals/metalloids from serum to cerebrospinal fluid (CSF), highlighting their potential neurotoxicity.
Concerns regarding adverse effects of metal/metalloids exposure on brain development and neurological disorders among children are increasing. However, the transport patterns of metals/metalloids across the blood-cerebrospinal fluid barrier (BCSFB) need to be clarified in children. A total of 99 Chinese pediatric patients were enrolled from February 2020 to August 2021, with a median age of 6.76 months. We detected 16 metal/metalloid levels in matched serum and cerebrospinal fluid (CSF) samples using inductively coupled plasma mass spectrometry. The BCSFB permeability of metals/metalloids were estimated and the potential effects of biomedical parameters were explored. Most metals/metalloids were detectable among > 80.0% of CSF samples. Significant correlations were observed between strontium (Sr, r = 0.46), molybdenum (Mo, r = 0.50), and cadmium (Cd, r = 0.24) concentrations in serum and CSF (P < 0.05). Ratios of metal/metalloid levels in CSF to serum (R-metal) ranged from 0.02 to 0.74, and hazardous metals/metalloids including arsenic (As), Cd, lead (Pb), thallium (Tl), and manganese (Mn) showed high transfer efficiencies across the BCSFB (R-metals > 0.5). With the adjustment of age and sex, albumin, beta 2-microglobulin, and total protein levels in CSF were positively associated with copper (Cu) permeability (FDR-adjusted P < 0.05), while glucose in CSF was negatively correlated with calcium (Ca), Cu, Sr, and Mo BCSFB permeability (FDR-adjusted P < 0.05). Q-Alb promoted Cu permeability across the BCSFB (FDR-adjusted P < 0.001), while C-reactive protein levels in serum were positively associated with selenium (Se) permeability (FDR-adjusted P = 0.046). For the first time, our findings provided data for the BCSFB permeability of 16 metals/metalloids in children, and indicated that some biomedical parameters could influence the transformation of metals/metalloids from serum to CSF. Metals/metalloids with strong BCSFB permeability warrant attention for their potential neurotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available