4.7 Article

Multi-omics analysis reveals BDE47 induces depression-like behaviors in mice by interfering with the 2-arachidonoyl glycerol-associated microbiota-gut-brain axis

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 259, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2023.115041

Keywords

BDE47; 2-Arachidonoyl glycerol; Dopamine transporter; Microbiota-gut-brain axis; Depression

Ask authors/readers for more resources

This study clarified the effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE47) on depression in mice and explored the role of the microbiome-gut-brain axis. BDE47 exposure increased depression-like behaviors in mice and disrupted dopamine transmission in the brain. It also disrupted microbiota communities in the intestines and caused metabolic disorders and inflammatory signaling. Overall, BDE47-induced depression in mice is likely mediated by gut microbial dysbiosis and disrupted signaling pathways.
2,2 ',4,4 '-tetrabromodiphenyl ether (BDE47) is a foodborne environmental risk factor for depression, but the pathogenic mechanism has yet to be fully characterized. In this study, we clarified the effect of BDE47 on depression in mice. The abnormal regulation of the microbiome-gut-brain axis is evidenced closely associated with the development of depression. Using RNA sequencing, metabolomics, and 16s rDNA amplicon sequencing, the role of the microbiome-gut-brain axis in depression was also explored. The results showed that BDE47 exposure increased depression-like behaviors in mice but inhibited the learning memory ability of mice. The RNA sequencing analysis showed that BDE47 exposure disrupted dopamine transmission in the brain of mice. Meanwhile, BDE47 exposure reduced protein levels of tyrosine hydroxylase (TH) and dopamine transporter (DAT), activated astrocytes and microglia cells, and increased protein levels of NLRP3, IL-6, IL-113, and TNF-alpha in the brain of mice. The 16 s rDNA sequencing analysis showed that BDE47 exposure disrupted microbiota communities in the intestinal contents of mice, and faecalibaculum was the most increased genus. Moreover, BDE47 exposure increased the levels of IL-6, IL-113, and TNF-alpha in the colon and serum of mice but decreased the levels of tight junction protein ZO-1 and Occludin in the colon and brain of mice. In addition, the metabolomic analysis revealed that BDE47 exposure induced metabolic disorders of arachidonic acid and neurotransmitter 2-Arachidonoyl glycerol (2-AG) was one of the most decreased metabolites. Correlation analysis further revealed gut microbial dysbiosis, particularly faecalibaculum, is associated with altered gut metabolites and serum cyto-kines in response to BDE47 exposure. Our results suggest that BDE47 might induce depression-like behavior in mice through gut microbial dysbiosis. The mechanism might be associated with the inhibited 2-AG signaling and increased inflammatory signaling in the gut-brain axis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available