4.7 Article

Biodiesel exhaust particle airway toxicity and the role of polycyclic aromatic hydrocarbons

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 259, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2023.115013

Keywords

Pollutant; Lung; Epithelial; Biodiesel; Particulate matter

Ask authors/readers for more resources

FAME biodiesel has less impact on airway epithelial toxicity compared to fossil diesel, but alters the profile of polycyclic aromatic hydrocarbons (PAHs) and increases the levels of carcinogenic PAHs. Higher blends of biodiesel result in higher levels of carcinogenic PAHs and stress response gene expression, increasing the risk of particle-associated carcinogenesis and toxicity.
Renewable alternatives to fossil diesel (FD) including fatty acid methyl ester (FAME) biodiesel have become more prevalent. However, toxicity of exhaust material from their combustion, relative to the fuels they are displacing has not been fully characterised. This study was carried out to examine particle toxicity within the lung epithelium and the role for polycyclic aromatic hydrocarbons (PAHs). Exhaust particles from a 20% (v/v) blend of FAME biodiesel had little impact on primary airway epithelial toxicity compared to FD derived particles but did result in an altered profile of PAHs, including an increase in particle bound carcinogenic B[a]P. Higher blends of biodiesel had significantly increased levels of more carcinogenic PAHs, which was associated with a higher level of stress response gene expression including CYP1A1, NQO1 and IL1B. Removal of semi-volatile material from particulates abolished effects on airway cells. Particle size difference and toxic metals were discounted as causative for biological effects. Finally, combustion of a single component fuel (Methyl decanoate) containing the methyl ester molecular structure found in FAME mixtures, also produced more carcinogenic PAHs at the higher fuel blend levels. These results indicate the use of FAME biodiesel at higher blends may be associated with an increased particle associated carcinogenic and toxicity risk.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available