4.5 Article

Utilization of the DNDC model to estimate yield and CO2 and CH4 emissions in a cotton-wheat rotation under the influence of various tillage treatments

Journal

ECOLOGICAL MODELLING
Volume 481, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ecolmodel.2023.110357

Keywords

No-tillage; Farm management modeling; Cotton-wheat rotation; Greenhouse gas emissions; Climate change; Residue management

Categories

Ask authors/readers for more resources

Tillage practices significantly affect greenhouse gas production and consumption. Based on simulation results, zero-tillage is the preferred option in wheat-cotton rotations.
Tillage practices have a substantial impact on the production and consumption of greenhouse gasses (GHG), which are the primary contributors to global warming. CO2 and CH4 emissions were stimulated in cotton-wheat rotations using the DeNitrification DeComposition (DNDC) model under various tillage techniques. The DNDC model was parameterized using experimental data collected at Darab Agricultural Research Station over the course of five years (2013-2017). Wheat and cotton were grown with zero-tillage (direct seeding), minimum tillage, and conventional tillage. The model was then utilized to simulate CO2 and CH4 emissions from cotton fields in rotation with wheat in the fourth and fifth years. The model validation results indicate that the model was effective at simulating soil factors and emitting gasses. The simulation results indicated that the average annual CO2 emissions for conventional tillage, minimum tillage, and zero-tillage treatments were 1858.0, 2116.0, and 2359.50 kg/ha, respectively, and the average annual CH4 emissions were 4.75, 4.00, and 3.45 kg/ ha, respectively, in the fourth and fifth years of the experiment. Based on the results of this study, it can be recommended that zero-tillage is preferable to other cultivation treatments in wheat-cotton rotations under similar conditions to those used in this study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available