4.7 Article

Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 166, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.107481

Keywords

HDAC3; Pharmacophore modeling; 3D QSAR; Virtual screening; Prime MM/GBSA; ADMET; And MD simulations

Ask authors/readers for more resources

This study utilized pharmacophore modeling and molecular docking methods to screen compounds with potential HDAC3 inhibitory properties. After lead optimization, four potential HDAC3 inhibitors were identified. These findings provide theoretical basis for the discovery of new potential HDAC3 inhibitors.
Histone deacetylase 3 (HDAC3) is an epigenetic regulator that involves gene expression, apoptosis, and cell cycle progression, and the overexpression of HDAC3 is accountable for several cancers, neurodegeneracy, and many other diseases. Therefore, HDAC3 emerged as a promising drug target for the novel drug design. Here, we carried out the pharmacophore modeling using 50 benzamide-based HDAC3 selective inhibitors and utilized it for PHASE ligand screening to retrieve the hits with similar pharmacophore features. The dataset inhibitors of best hypotheses used to build the 3D QSAR model and the generated 3D QSAR model resulted in good PLS statistics with a regression coefficient (R2) of 0.89, predictive coefficient (Q2) of 0.88, and Pearson-R factor of 0.94 indicating its excellent predictive ability. The hits retrieved from pharmacophore-based virtual screening were subjected to docking against HDAC3 for the identification of potential inhibitors. A total of 10 hitsM1 to M10 were ranked using their scoring functions and further subject to lead optimization. The Prime MM/GBSA, AutoDock binding free energies, and ADMET studies were implemented for the selection of lead candidates. The four ligand molecules M1, M2, M3, and M4 were identified as potential leads against HDAC3 after lead opti-mization. The top two leads M1 and M2 were subjected to MD simulations for their stability evaluation with HDAC3. The newly designed leads M11 and M12 were identified as HDAC3 potential inhibitors from MD sim-ulations studies. Therefore, the outcomes of the present study could provide insights into the discovery of new potential HDAC3 inhibitors with improved selectivity and activity against a variety of cancers and neurode-generative diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available