4.7 Article

Multi-modal cross-attention network for Alzheimer's disease diagnosis with multi data

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 162, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.107050

Keywords

Alzheimer's disease; Deep learning; Computer-aided diagnosis; Multiple modalities; Attention

Ask authors/readers for more resources

In this paper, a novel multi-modal cross-attention AD diagnosis framework is proposed to learn the interaction between different modalities for better utilizing their complementary roles in AD diagnosis. It effectively fuses the features of multi-modal data to improve diagnostic performance. Experimental results demonstrate that combining multi-modality data via cross-attention is helpful for accurate AD diagnosis.
Alzheimer's disease (AD) is a neurodegenerative disorder, the most common cause of dementia, so the accurate diagnosis of AD and its prodromal stage mild cognitive impairment (MCI) is significant. Recent studies have demonstrated that multiple neuroimaging and biological measures contain complementary information for diagnosis. Many existing multi-modal models based on deep learning simply concatenate each modality's features despite substantial differences in representation spaces. In this paper, we propose a novel multi-modal cross-attention AD diagnosis (MCAD) framework to learn the interaction between modalities for better playing their complementary roles for AD diagnosis with multi-modal data including structural magnetic resonance imaging (sMRI), fluorodeoxyglucose-positron emission tomography (FDG-PET) and cerebrospinal fluid (CSF) biomarkers. Specifically, the imaging and non-imaging representations are learned by the image encoder based on cascaded dilated convolutions and CSF encoder, respectively. Then, a multi-modal interaction module is introduced, which takes advantage of cross-modal attention to integrate imaging and non-imaging information and reinforce relationships between these modalities. Moreover, an extensive objective function is designed to reduce the discrepancy between modalities for effectively fusing the features of multi-modal data, which could further improve the diagnosis performance. We evaluate the effectiveness of our proposed method on the ADNI dataset, and the extensive experiments demonstrate that our MCAD achieves superior performance for multiple AD-related classification tasks, compared to several competing methods. Also, we investigate the importance of cross-attention and the contribution of each modality to the diagnostics performance. The experimental results demonstrate that combining multi-modality data via cross-attention is helpful for accurate AD diagnosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available