4.7 Article

An ensemble of stacking classifiers for improved prediction of miRNA-mRNA interactions

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 164, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.107242

Keywords

Functional miRNA target; Candidate target site (CTS); Nucleotide properties; Sequence encoding; Stacking classifiers

Ask authors/readers for more resources

We developed a stacking classifier algorithm that surpasses previous algorithms in predicting functional miRNA targets by effectively selecting conservative candidate target sites using feature encoding techniques.
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a crucial role in regulating gene expression at the post-transcriptional level by binding to potential target sites of messenger RNAs (mRNAs), facilitated by the Argonaute family of proteins. Selecting the conservative candidate target sites (CTS) is a challenging step, considering that most of the existing computational algorithms primarily focus on canonical site types, which is a time-consuming and inefficient utilization of miRNA target site interactions. We developed a stacking classifier algorithm that addresses the CTS selection criteria using feature-encoding techniques that generates feature vectors, including k-mer nucleotide composition, dinucleotide composition, pseudonucleotide composition, and sequence order coupling. This innovative stacking classifier algorithm surpassed previous state-of-the-art algorithms in predicting functional miRNA targets. We evaluated the performance of the proposed model on 10 independent test datasets and obtained an average accuracy of 79.77%, which is a significant improvement of 7.26 % over previous models. This improvement shows that the proposed method has great potential for distinguishing highly functional miRNA targets and can serve as a valuable tool in biomedical and drug development research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available