4.6 Article

Self-stabilizing economic model predictive control without pre-calculated steady-state optima: Stability and robustness

Journal

COMPUTERS & CHEMICAL ENGINEERING
Volume 178, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compchemeng.2023.108349

Keywords

Real-time optimization; Nonlinear model predictive control; Optimal control; Nonlinear programming; Control stability

Ask authors/readers for more resources

We propose a new economic nonlinear model predictive control (eNMPC) formulation that tracks the optimality conditions of the real-time optimization problem rather than any specific steady states. The proposed formulation maintains its nature of optimizing economic performance and assured stability properties with the Lyapunov inequality constraint for the closed-loop control. Under general assumptions, we prove that the proposed controller is asymptotically stable without process disturbances and is input-to-state stable when there is a process disturbance. The proposed eNMPC is demonstrated on two case studies and compared against setpoint-tracking NMPC with setpoints determined by the steady-state real-time optimizer to show improved dynamic performance. We also highlight the capability of self-stabilization of the new eNMPC with parameter updates in the process model.
We propose a new economic nonlinear model predictive control (eNMPC) formulation that tracks the optimality conditions of the real-time optimization problem rather than any specific steady states. The proposed formulation maintains its nature of optimizing economic performance and assured stability properties with the Lyapunov inequality constraint for the closed-loop control. Under general assumptions, we prove that the proposed controller is asymptotically stable without process disturbances and is input-to-state stable when there is a process disturbance. The proposed eNMPC is demonstrated on two case studies and compared against setpoint-tracking NMPC with setpoints determined by the steady-state real-time optimizer to show improved dynamic performance. We also highlight the capability of self-stabilization of the new eNMPC with parameter updates in the process model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available