4.7 Article

Electron-phonon coupling from GW perturbation theory: Practical workflow combining BerkeleyGW, ABINIT, and EPW

Journal

COMPUTER PHYSICS COMMUNICATIONS
Volume 295, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.cpc.2023.109003

Keywords

GW; Electron -phonon coupling; Wannier interpolation

Ask authors/readers for more resources

This article presents a workflow for practical calculations of electron-phonon coupling and includes the effect of many-electron correlations using GW perturbation theory. The workflow combines different software packages to enable accurate calculations at the level of quasiparticle band structures.
We present a workflow of practical calculations of electron-phonon (e-ph) coupling with many-electron correlation effects included using the GW perturbation theory (GWPT). This workflow combines BerkeleyGW, ABINIT, and EPW software packages to enable accurate e-ph calculations at the GW self-energy level, going beyond standard calculations based on density functional theory (DFT) and density-functional perturbation theory (DFPT). This workflow begins with DFT and DFPT calculations (ABINIT) as starting point, followed by GW and GWPT calculations (BerkeleyGW) for the quasiparticle band structures and e-ph matrix elements on coarse electron k- and phonon q-grids, which are then interpolated to finer grids through Wannier interpolation (EPW) for computations of various e-ph coupling determined physical quantities such as the electron self-energies or solutions of anisotropic Eliashberg equations, among others. A gauge-recovering symmetry unfolding technique is developed to reduce the computational cost of GWPT (as well as DFPT) while fulfilling the gauge consistency requirement for Wannier interpolation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available