4.5 Article

Structure and energetics of serum protein complex of tea adulterant dye Bismarck brown Y using experimental and computational methods

Journal

COMPUTATIONAL BIOLOGY AND CHEMISTRY
Volume 108, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compbiolchem.2023.107976

Keywords

Bismarck Brown Y; CI 21000; Fluorescence Spectroscopy; Molecular Docking; Molecular dynamics; Circular dichroism spectroscopy

Ask authors/readers for more resources

This study investigates the interaction between the food dye BBY and the serum protein BSA. The results show that BBY binds to a specific site on BSA through hydrophobic interactions, affecting the structural stability of the protein. These findings enhance our understanding of the molecular-level interactions between BBY and BSA.
Tea, a widely consumed aromatic beverage, is often adulterated with dyes such as Bismarck brown Y (C.I. 21000) (BBY), Prussian blue, and Plumbago, which pose potential health risks. The objective of this study is to analyze how the food dye BBY interacts with serum protein, bovine serum albumin (BSA). This study investigated the BBY-BSA interaction at the molecular level. Fluorescence spectroscopy results showed that the quenching of BSA by BBY is carried out by dynamic quenching mechanism. The displacement assay and molecular docking studies revealed that BBY binds at the flavanone binding site of BSA with hydrophobic interactions. Circular Dichroism results indicate the structural stability of the protein upon BBY binding. Molecular dynamics simulations demonstrated the stability of the complex in a dynamic solvent system, and quantum mechanics calculations showed slight conformational changes of the diaminophenyl ring due to increased hydrophobic interaction. The energetics of gas phase optimized and stable MD structures of BBY indicated similar values which further confirmed that the conformational changes were minor, and it also exhibited a moderate binding with BSA as shown by the MM/PBSA results. This study enhances our understanding of the molecular-level interactions between BBY and BSA, emphasizing the critical role of hydrophobic interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available