4.7 Article

Prediction of elastic properties of 3D4D rotary braided composites with voids using multi-scale finite element and surrogate models

Journal

COMPOSITE STRUCTURES
Volume 328, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2023.117579

Keywords

3D braided composites; 3D rotary braiding; Mechanical properties prediction; Surrogate model

Ask authors/readers for more resources

The conventional evaluation of 3D braided composites' mechanical properties through numerical and experimental methodologies hinders material application due to the expenses, time constraints, and laborious efforts involved. This study establishes a multi-scale finite element model and a surrogate model for predicting the elastic properties of 3D4D rotary braided composites with voids. By optimizing a neural network model, the results are validated and provide valuable insights into the microstructure and properties of these composites.
The conventional evaluation of 3D braided composites' mechanical properties through numerical and experimental methodologies serves as a hindrance to material application owing to the considerable expenses, time constraints, and laborious efforts involved. Moreover, the presence of void defects induced during the processing exacerbates this challenge. In this study, a multi-scale finite element model (FEM) and a surrogate model are established for predicting elastic properties of three dimensional four directional (3D4D) rotary braided composites with voids for the first time. Based on the established FEM, a comprehensive dataset containing 768 data points is formed, covering the ranges of both design parameters and void defect parameters. The influence of braiding angle, yarn width, and porosity, on the elastic constants of 3D4D rotary braided composites is accurately analyzed. A genetic algorithm-optimized back propagation neural network (GABPNN) model is developed, which possess the capability to replicate FEM outcomes with a commendable R-value of 0.99. The remarkable concordance between the anticipated outcomes and experimental datasets corroborates the triumphant implementation of the present method in unraveling the interconnections between microstructure and properties in 3D4D rotary braided composites containing voids. Consequently, this offers a propitious instrument for expediting the intelligent conception and refinement of composite materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available