4.7 Article

Energetic hydrogen-bonded open-framework as promising green combustion catalyst for nitramine-based solid propellants

Journal

COMBUSTION AND FLAME
Volume 257, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2023.113048

Keywords

Open framework compounds; Solid propellants; Catalytic combustion; Burning rate; Pressure exponent

Ask authors/readers for more resources

The development of halogen-free nitramine-based green solid propellants has attracted significant interest, and the use of suitable combustion catalysts has been explored to improve their burn rates and pressure generation. A new nitrogen-rich open framework compound 1 was synthesized and evaluated as an efficient Pb-free combustion catalyst for HMX-nitrocellulose-nitroglycerin solid composite propellant formulation. Compound 1 exhibited impressive properties and showed great potential to be used in the development of future highly energetic green solid propellants.
The development of halogen-free nitramine-based green solid propellants has attracted a significant interest due to their application in rapidly developing aerospace technologies. However, relatively low burn rates, and generation of high pressure in the combustion chamber limit applications of such propellants. The alleviation of these problems could be achieved by using suitable combustion catalysts. Herein, a new energetic nitrogen-rich open framework compound 1 was prepared and evaluated as an efficient Pb-free combustion catalyst for HMX-nitrocellulose-nitroglycerin solid composite propellant formulation. Compound 1 was synthesized by a straightforward one-step process, its structure was comprehensively characterized by x-ray crystallography, and it was found to be thermostable (decomposition at 289 degrees C), insensitive to mechanical impact and friction (60 J, 360 N), and showed high hydrolytic stability. A propellant formulation containing 3.0 wt.% of 1 exhibited 45% increase in its burning rate (under 6.0 MPa) versus catalyst-free reference propellant. In the pressure range of 3-10 MPa, the pressure exponent was calculated to be 0.32, which is more than two times lower than of the reference propellant. These impressive properties of catalyst 1 suggest that it has a great potential to be further used in the development of future highly energetic green solid propellants.(c) 2023 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available