4.7 Article

Graphene oxide-doped chiral dextro-hydrogel promotes peripheral nerve repair through M2 polarization of macrophages

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 233, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2023.113632

Keywords

Nerve repair; Chirality; Graphene; Macrophage polarization; Angiogenesis

Ask authors/readers for more resources

This study demonstrates the importance of chirality in nerve repair by constructing a GO-phenylalanine derivative hydrogel system. In vivo experiments show that the dextro group significantly improves functional recovery and histological restoration in rat sciatic nerve repair models. The doped GO promotes angiogenesis and myelination. These results suggest that chirality plays a crucial role in promoting nerve regeneration.
Dextro-chirality is reported to specifically promote the proliferation and survival of neural cells. However, applying this unique performance to nerve repair remains a great challenge. Graphite oxide (GO)-phenylalanine derivative hydrogel system was constructed through doping 5% GO into self-assembly dextro-or levo-hydrogels (named as dextro and levo group, respectively), which exhibited identical physical and chemical properties, cyto-compatibility, and mirror-symmetrical chirality. In vivo experiments using rat sciatic nerve repair models showed that the functional recovery and histological restoration of regenerating nerves in the dextro group were significantly improved, approaching that of autograft implantation. The doped GO promoted M2 polarization of macrophages, increasing the expression of platelet-derived growth factor BB chain and vascular endothelial growth factor, thereby improving angiogenesis in regenerating nerves. A mechanism is proposed for the facilitated nerve repair through the synergistic effect of GO and dextro-hydrogel, involving dextro-chirality selection of neural cells and GO-induced M2 polarization, which promotes microvascular regeneration and myelination. This study showcases the immense potential of chirality in addressing neurological issues by providing a compelling demonstration of the development of effective therapies that leverage the unique matrix chirality selection of nerve cells to promote peripheral nerve regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available