4.6 Article

pH-responsive materials based on sodium carboxymethyl cellulose as a safe and effective strategy for camptothecin delivery

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfa.2023.132072

Keywords

Spiropyran; Carboxymethyl cellulose; Camptothecin; ZIF-8; Drug delivery

Ask authors/readers for more resources

In this study, a simple approach for preparing a multifunctional drug delivery system was reported. The system utilized a novel structure modified cellulose to control drug release through pH-responsive carriers. The system showed great promise in the safe and effective treatment of cancer in the gastrointestinal tract.
The safe and efficient delivery of drugs is regarded as a fundamental strategy for enhancing the low effectiveness of cancer treatments. Herein, a simple preparation approach for a multifunctional drug delivery system was reported. The novel structure of spiropyran (SP), 1-(6 & PRIME;-bromo-hexyl)- 3,3-dimethyl indoline-6 & PRIME;-methoxy benzopyran, was used to modify sodium carboxymethyl cellulose (NaCMC) for controlling drug release. SP has a heightened sensitivity to variations in pH, with a linear response range of .2-5.5. The elevated drug loading (31.68 %) can be attributed to the hydrophobic interaction of SP and the adsorption of NaCMC. Porous materials composed of zinc ions and dimethylimidazole (ZIF-8) as an embedded shell, which serves as a barrier that effectively reduces drug leakage from 20 % to 12 %, thus mitigating the side effects of camptothecin (CPT) in alkaline conditions. In acidic conditions, the collapse of ZIF-8 provides zinc ions that act as crosslinking agents for NaCMC, thereby improving the channel of drug release and enhancing the release amount from 51.9 % to 66.7 % compared with SP-grafted NaCMC micelles. The inherent biological adhesion of NaCMC ensures sustained drug release for a period of up to 40 h. These pH-responsive carriers hold great promise in the safe and effective treatment of cancer in the gastrointestinal tract, with CPT emerging as a highly promising candidate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available