4.5 Article

Water Induced Alterations in Self-Assembly of a Bio-Surfactant in Deep Eutectic Solvent for Enhanced Enzyme Activity

Journal

CHEMPHYSCHEM
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.202300293

Keywords

aggregation; deep eutectic solvents; enzyme catalysis; isothermal titration calorimetry; sustainable chemistry

Ask authors/readers for more resources

Deep eutectic solvents (DESs) are environmentally friendly solvents with unique properties. This study investigated the self-assembly of a surfactant in DES-water mixtures and explored the catalytic activity of Cytochrome-c (Cyt-c) in the formed colloidal systems. The results showed that DES-water mixtures promote the aggregation of the surfactant and enhance the catalytic activity of Cyt-c.
Deep eutectic solvents (DESs) meet important requirements for green solvent technology, including non-toxicity, biodegradability, sustainability, and affordability. Despite possessing low cohesive energy density than water, DESs have been found to support the self-assembly of amphiphiles. It is very much pertinent to examine the effect of water on self-assembly of surfactants in DESs as the presence of water alters the inherent structure of DES, which is expected to affect the characteristic properties of self-assembly. Following this, we have investigated the self-assembly of amino-acid based surfactant, Sodium N-lauroyl sarcosinate (SLS), in DES-water mixtures (10, 30 and 50 w/w% of water) and explored the catalytic activity of Cytochrome-c (Cyt-c) in the formed colloidal systems. Investigations using surface tension, fluorescence, dynamic light scattering (DLS), and isothermal titration calorimetry (ITC) have shown that DES-water mixtures promote the aggregation of SLS, resulting in the lower critical aggregation concentration (cac & SIM;1.5-6-fold) of the surfactant as compared to water. The nanoclustering of DES at low water content and it's complete de-structuring at high water content affects the self-assembly in a contrasting manner governed by different set of interactions. Further, Cyt-c dispersed in DES-water colloidal solutions demonstrated 5-fold higher peroxidase activity than that observed in phosphate buffer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available