4.6 Article

Hexaguanidino-Triptycenes and Triphenylenes: Electronic Coupling in Molecules Containing Three Redox-Active o-Diguanidinobenzene Units Connected either Directly or Interacting Through Homoconjugation

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.202301903

Keywords

cobalt; homoconjugation; multiple redox states; oxidation; redox-active ligands

Ask authors/readers for more resources

Novel redox-active hexaguanidine molecules with multiple redox states were synthesized and their electronic structure and charge delocalization were studied. Trinuclear high-spin metal complexes were also synthesized and their magnetic and redox properties were analyzed. The choice of oxidant can switch between metal- and ligand-centered oxidation reactions, leading to significant changes in magnetic or optical properties.
Novel redox-active hexaguanidine molecules with multiple redox states were synthesized by connecting three o-diguanidinobenzene units. In 2,3,6,7,14,15-hexaguanidino-triptycenes, the three redox-active o-diguanidinobenzene units are connected through C-C bonds to the sp(3)-hybridized bridgehead C atoms, and in 2,3,6,7,10,11-hexaguanidino-triphenylenes they are directly connected. The connectivity difference leads to different electronic coupling between the three redox-active o-diguanidinobenzene units, with homoconjugation being present in the triptycene, but not in the triphenylene compounds. Motivated by the appearance of an intense low-energy electronic transition, we especially analysed the effect of homoconjugation on the electronic structure and charge delocalization in the dicationic redox state of the triptycene derivatives. Then, several trinuclear high-spin cobalt (and copper) complexes were synthesized with the triphenylene and triptycene ligands, and the magnetic coupling and redox properties analysed. By choice of the coligands (hexafluoroacetylacetonate, trifluoroacetylacetonate and acetylacetonate), oxidation could be switched between metal- and ligand-centered redox events, leading to drastic changes in the magnetic or optical properties, especially as a consequence of homoconjugation in the triptycene derivatives.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available