4.6 Article

Theoretical Prediction of Electrocatalytic Reduction of CO2 Using a 2D Catalyst Composed of 3 d Transition Metal and Hexaamine Dipyrazino Quinoxaline

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.202302232

Keywords

electrocatalysis; 2D MOF; TM-HADQ; DFT calculations

Ask authors/readers for more resources

This study investigates metal-organic frameworks (MOFs) composed of transition metals and organic ligands as potential electrocatalysts for CO2 reduction. Through testing ten different catalysts, this study finds that seven of them exhibit high CO2 reduction selectivity.
Transition metals and organic ligands combine to form metal-organic frameworks (MOFs), which possess distinct active sites, large specific surface areas and stable porous structures, giving them considerable promise for CO2 reduction electrocatalysis. In the present study, using spin polarisation density-functional theory, a series of 2D MOFs constructed from 3d transition metal and hexamethylene dipyrazoline quinoxaline(HADQ) were investigated. The calculated binding energies between HADQ and metal atoms for the ten TM-HADQ monolayers were strong sufficient to stably disperse the metal atoms in the HADQ monolayers. Of the ten catalysts tested, seven (Sc, Ni, Cu, Zn, Ti, V and Cr) exhibited high CO2 reduction selectivity, while Mn, Fe and Co required pH values above 2.350, 6.461 and 6.363, respectively, to exhibit CO2 reduction selectivity. HCOOH was the most important producer for Sc, Zn, Ni and Mn, while CH4 was the main producer for Ti, Cr, Fe and V. Cu and Co were less selective, producing HCHO, CH3OH, and CH4 simultaneously at the same rate-determining step and limiting potential. The Cu-HADQ catalyst had a high overpotential for the HCHO product (1.022 V), while the other catalysts had lower overpotentials between 0.016 V and 0.792 V. Thus, these results predict TM-HADQ to show excellent activity in CO2 electrocatalytic reduction and to become a promising electrocatalyst for CO2 reduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available