4.7 Article

Experimental precipitation of cryogenic carbonate

Journal

CHEMICAL GEOLOGY
Volume 635, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.chemgeo.2023.121615

Keywords

Cryogenic carbonate; Calcite; Vaterite; Experiments; Morphotypes; Carbon and oxygen isotopes

Ask authors/readers for more resources

This study presents an experimental approach to calculate the isotopic composition of the precipitating solution in cryogenic cave carbonates (CCC). The experiments show that the morphology and precipitation sequence of CCC are related to the water chemistry changes. This research provides constraints for interpreting the morphology and isotopic composition of ancient CCCs.
Cryogenic cave carbonates (CCC) represent a specific type of speleothem precipitating from freezing water in caves. Over the past decade, considerable progress has been made concerning cryogenic calcite petrography, crystallography and geochemistry. Uncertainties remain, however, as the cave waters from which ancient cryogenic calcites form are not preserved. The present study provides an experimental approach to re-calculate the isotopic composition of the precipitating solution using CCC data. Calcium-rich bicarbonate water prepared by bubbling CO2 gas with a very low delta C-13 value (similar to 35 %) into the water was cooled under controlled laboratory conditions to account for the water chemistry changes during freezing. The experiments yielded cryogenic calcite and vaterite precipitating at temperatures of +1, +0, 0.5, 0.7, 1 and 2 degrees C, with complete freezing occurring at 0.7, 1 and 2 degrees C and partial freezing at 0.5 degrees C. The delta O-18(water) and delta C-13(DIC) values, pH, electrical conductivity and alkalinity were recorded before and after the experiments. Our work documents an increase in pH, suggesting CO2 degassing eventually reaches supersaturation with calcite, leading to CaCO3 precipitation. Calcite precipitation rates are lower at the longer experiment (> 45 days). This is further confirmed by the decreasing calcite saturation index (SIcc) with time. Carbon isotope analyses of the water and carbonates revealed kinetic effects during rapid freezing. A large increase in Delta C-13(DIC) values of the water (up to about 30 %) was found between the start and end of the experiments. Reasons may include CO2 degassing with increasing time leading to a markedly C-13-enriched solution. Based on our experimental data, the cryogenic crystal morphotypes are related to the precipitation sequence. Sharp-edged rhombohedra (calcite) precipitate first. Subsequently, spherulitic (vaterite) morphotypes precipitate from almost completely frozen water characterised by a high SIcc. This first experimental work dealing with cryogenic carbonate precipitates and their stable isotope composition sheds light on the origin of these peculiar speleothems and provides constraints to interpret morphologies and isotopic compositions of ancient CCCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available