4.7 Article

Calcium peroxide mediated sustainable microalgal-bacterial consortium system: Role and significance of configured anaerobic fermentation

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 476, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.146807

Keywords

Microalgal-bacterial consortium system; Anaerobic fermentation; Short-chain fatty acid; Calcium peroxide; Sewage treatment

Ask authors/readers for more resources

Microalgal-bacterial consortium (MBC) is an effective method for wastewater treatment with advantages in nutrient removal, resource recovery, and energy conservation. However, the insufficient and unstable carbon source in the influent limits the efficient and stable operation of the MBC sewage treatment system. In this study, a calcium peroxide-mediated anaerobic fermenter was configured to transfer MBC sludge into short-chain fatty acids (SCFAs) as a carbon source, alleviating the limitations and improving the performance of the sewage treatment system.
Microalgal-bacterial consortium (MBC) is an effective way to meet increasingly stringent standards in wastewater treatment, with advantages in nutrient removal, resource recovery, and energy conservation. The efficient and stable operation of the MBC sewage treatment system is generally limited by the insufficient and unstable carbon source in the influent. In this study, a calcium peroxide-mediated anaerobic fermenter was configured to transfer the MBC sludge into the preferred carbon source, short-chain fatty acids (SCFAs) in-situ, to alleviate the limitations. Experimental results showed that after 4-day 0.15 g/g VS calcium peroxide mediated anaerobic fermentation, the production of SCFAs and the proportion of acetic acid reached 514.8 mg COD/g VS and 59 %, respectively. Scanning electron microscopy, COD mass balance analysis, and lactate dehydrogenase assays jointly showed that calcium peroxide effectively promoted the breakdown of MBC sludge cells, which led to the release of large amounts of organic matter and could be attributed to the released OH-, & sdot;OH and & sdot;O2- from calcium peroxide, thereby providing more bioavailable substrates for SCFAs production. Microbial community analysis indicated that the anaerobes associated with hydrolysis and degradation of refractory organic matters were enriched in the mediated fermenter and had positive correlation with SCFAs production. Using such fermentation liquid as an additional carbon source for influent sewage, the MBC process performance was significantly promoted, with phosphorus and COD removal and sludge settleability reaching 84.7 %, 96.1 %, and 33 %, respectively. Configuring calcium peroxide-mediated anaerobic fermentation may thus become a sustainable strategy to strengthen the MBC sewage treatment system, thus providing new ideas for wastewater treatment to reduce inputs and improve performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available