4.7 Article

Polyphenol synergistic cerium oxide surface engineering constructed core-shell nanostructures as antioxidants for durable and high-performance proton exchange membrane fuel cells

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 472, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.144804

Keywords

Proton exchange membrane; Cerium oxide; Surface modification; Radical scavenge; Chemical durability

Ask authors/readers for more resources

Using tea polyphenol-modified CeO2 nanoparticles in proton exchange membrane fuel cells can improve membrane performance and oxidation resistance, mitigating degradation and Ce migration issues.
The chemical degradation of proton exchange membranes (PEMs) suffering from radical attack is a crucial issue in the development of proton exchange membrane fuel cells (PEMFCs), while incorporating cerium oxide (CeO2) nanoparticles (NPs) with regenerative redox properties to eliminate radicals could effectively alleviate degradation. However, the low stability and restricted activity of CeO2 in the PEMFC operating condition and the poor compatibility with PEM due to CeO2 agglomeration stimulate the urgency for structural modulation of CeO2. Achieving a balance of membrane performance and oxidation resistance through a rational surface modification strategy of CeO2 is important for expanding PEMFC applications. Herein, polyphenols surface functionalized CeO2 core-shell structure (CeO2@TP) were constructed via assembling oxidation-induced coupling tea polyphenols (TP) on CeO2 NPs. The TP oligomeric shell as a protective layer enhances the stability of CeO2, mitigating radical scavenging activity degradation and improving compatibility with PEMs. Physicochemical characterisation shows that the overall performance of the nanocomposite membrane is improved due to the interaction of CeO2@TP nanoparticles with the polymer matrix. Gratifyingly, the phenolic hydroxyl-rich reductive TP oligomeric shell accelerates the regeneration of Ce(IV) to Ce(III), increasing the proportion of Ce (III) and oxygen vacancies on the CeO2 surface, thus boosting antioxidation efficiency. As a result, the CeO2@TP-based PEMs exhibited an OCV decay rate of 0.22 mV h(-1), a maximum power density of 1.06 W cm(-2), an H-2 crossover value of 2.18 mA cm(-2), thickness retention (91.1%), and negligible Ce migration after 404 h of accelerated degradation testing. It is proven that the desired consequences of doping antioxidants in PFSA matrix can be intensified by surface modulation of the physicochemical properties of CeO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available