4.7 Article

The effects of public health measures on severe dengue cases: An optimal control approach

Journal

CHAOS SOLITONS & FRACTALS
Volume 172, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chaos.2023.113577

Keywords

Optimal control; Vector-host model; Vaccination; Dengue fever; Cross temporary immunity; ADE

Ask authors/readers for more resources

Dengue fever is a globally important viral mosquito-borne disease, with 3.9 billion people at risk of infection. Control measures including mosquito bite prevention and vector control programs have been used for years in endemic countries. Vaccination has also become an important tool for disease prevention and control. The economic costs of dengue control programs vary, so it is important to evaluate optimal control strategies in different epidemiological contexts.
Dengue fever is the most important viral mosquito-borne disease worldwide, with approximately 3.9 billion people at risk of acquiring dengue infection. Measures against mosquito bite combined with vector control programs to reduce mosquito population have been used in endemic countries for several years. Most recently, vaccines have become an important ally to prevent and control disease transmission. Economic costs of dengue control programs vary from region to region and therefore designing an optimal control strategy must be evaluated at different epidemiological contexts. Using a multi-strain vector-host mathematical model, we investigate the impact of different control measures to reduce dengue prevalence. A detailed sensitivity analysis to identify the key parameters influencing disease transmission is followed by an exploratory analysis of the possible solutions for the optimal control problem considering preventive measures to avoid mosquito bites, reduce mosquito population and vaccinate human hosts. The proposed cost functional includes a weighted sum of several efforts (not necessarily quantified as economic costs) for the controls which are evaluated alone and combined. The control system is analyzed using the Pontryagin's Principle for optimal control where different strategies are compared. Our results have shown that the simultaneous use of intervention measures are highly effective to reduce disease cases, however, the use of a single control measure can be as effective as the use of two or more controls combined. A careful evaluation of the epidemiological scenario is advised before designing strategies for disease prevention and control, allowing an optimal allocation of the public health resources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available