4.7 Article

Thermoluminescence kinetic parameters of beta irradiated the zinc gallate phosphor using different methods

Journal

CERAMICS INTERNATIONAL
Volume 49, Issue 14, Pages 23732-23742

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2023.04.211

Keywords

XRD; EDX; Thermoluminescence; Kinetic parameters

Ask authors/readers for more resources

The ZnGa2O4 phosphor material was synthesized using the gel combustion method and its structural characteristics were studied. Thermoluminescence measurements were conducted and the depth and frequency factors of electron traps were determined. The phosphors showed potential as effective thermoluminescence dosimeters.
The ZnGa2O4 phosphor material was synthesised through the gel combustion method, and its structural characteristics were studied via X-ray powder diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). The XRD result indicates the generation of ZnGa2O4 in spinal cubic phase with a 25 nm crystalline size. The synthesized phosphor was irradiated using a90Sr/90Y source with a dose range of 0.1 Gy-100 Gy. For measuring thermoluminescence (TL), a linear heating rate of 2 degrees Cs  1 was applied to the sample in a temperature range of 25 degrees C-450 degrees C. The TL experiment revealed two peak maxima located at 180 degrees C and 304 degrees C and a shoulder around 70 degrees C. By preheating at 110 degrees C, the low temperature peak at 70 degrees C is removed. Both the depth and frequency factors of electron traps were determined using various heating rates (VHR), Tm-Tstop combined with initial rise (IR), and Computerised Glow Curve Deconvolution (CGCD). In both the Tm-Tstop and CGCD methods, six overlapping glow peaks were detected below the main glow peaks. The calculated activation energy values and peak maximum temperatures agree well with each other. The depths of electron traps calculated by different methods were found to be between 0.4 and 1.4 eV. We observed that both peak maximum temperatures and the area under glow peaks gradually decreased with an increase in the heating rate. Both Peak 1 and Peak 2 show sublinear relationship between 0.1-5Gy and 10-100 Gy. The findings of the present study show that the phosphors can serve as effective TLDs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available