4.6 Article

miR-29c-3p acts as a tumor promoter by regulating β-catenin signaling through suppressing DNMT3A, TET1 and HBP1 in ovarian carcinoma

Journal

CELLULAR SIGNALLING
Volume 113, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2023.110936

Keywords

Ovarian carcinoma; miR-29c-3p; beta-catenin signaling; DNMT3A; TET1; HBP1

Categories

Ask authors/readers for more resources

miR-29c-3p is overexpressed in benign and malignant ovarian carcinoma and is associated with poor prognosis. Its overexpression modulates tumorigenesis in ovarian cancer cells, including epithelial-mesenchymal transition, proliferation, migration, and invasion, through the regulation of DNMT3A, TET1, and HBP1. miR-29c-3p may serve as a potential biomarker for clinical diagnosis or co-diagnosis of ovarian carcinoma.
Ovarian Carcinoma (OvCa) is characterized by rapid and sustained growth, activated invasion and metastasis. Studies have shown that microRNAs recruit and alter the expression of key regulators to modulate carcinogenesis. Here, we find that miR-29c-3p is increased in benign OvCa and malignant OvCa compared to normal ovary. Univariate and multivariate analyses report that miR-29c-3p overexpression is associated with poor prognosis in OvCa. Furthermore, we investigate that expression of miR-29c-3p is inversely correlated to DNA methyltransferase (DNMT) 3 A and Ten-Eleven-Translocation enzyme TET1. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies confirm that aberrant miR-29c-3p modulates tumorigenesis in OvCa cells, including epithelial-mesenchymal transition (EMT), proliferation, migration, and invasion. This modulation occurs through the regulation of beta-catenin signaling by directly targeting 3'UTR of DNMT3A, TET1 and the HMG box transcription factor HBP1 and suppressing their expression. The further 3D spheres assay clearly shows the regulatory effects of miR-29c-3p on OvCa tumorigenesis. Additionally, the receiver operating characteristic (ROC) curve analysis of miR-29c-3p and the clinical detection/diagnostic biomarker CA125 suggests that miR-29c-3p may be conducive for clinical diagnosis or co-diagnosis of OvCa. These findings support miR-29c-3p functions as a tumor promoter by targeting its functional targets, providing new potential biomarker (s) for precision medicine strategies in OvCa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available