4.4 Article

Exploring biomarkers for autophagy-mediated macrophage pyroptosis in atherosclerosis

Journal

CELL BIOLOGY INTERNATIONAL
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1002/cbin.12080

Keywords

atherosclerosis; autophagy; immunity; macrophage; pyroptosis

Categories

Ask authors/readers for more resources

This study investigated the role of macrophage autophagy-related pyroptosis in atherosclerosis through various analyses using R software and datasets such as GEO and GSE. The findings revealed differentially expressed autophagy-related genes, enriched pathways, and immune cell distribution. Six hub genes were identified as regulators of macrophage-related autophagy, with high prediction value. Functional analysis and immune correlation indicated their involvement in macrophages and T cells. Venn plot and single-cell analysis provided further evidence, validated in human samples. The discovery of these hub genes and their significance in atherosclerosis highlights the importance of macrophage autophagy-mediated pyroptosis in the disease pathogenesis.
This study tried to investigate the macrophage autophagy-related pyroptosis in atherosclerosis. The gene expression omnibus (GEO) dataset of GSE100927 was used for differentially expressed genes (DEG) screening, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG), CIBERSORT, weighted correlation network analysis (WGCNA), receiver operating characteristic (ROC), gene set enrichment analysis (GSEA), and correlation analysis, and GSE159677 was used for single-cell analysis, all conducted in R software. Protein-protein interaction (PPI) was constructed in STRING and analyzed in Cytoscape. Transcription factors, drugs, and tissue co-expression network were explored in NetworkAnalyst. A total of 110 autophagy-related DEG (DEATG) were identified, and GO/KEGG revealed the top items enriched in autophagy, phagosome and lysosome. CIBERSORT showed 11 cell types were markedly differentially expressed (p < .05). WGCNA found the turquoise and yellow module were positively correlated with macrophage M0 (corr = 0.5, P = 6e-6) and M2 (corr = 0.54, P = 1e-6), respectively. Then 35 immune-related DEATG were identified, and functional analysis showed immune effector process, interleukin-6 and myeloid cell activation were enriched besides autophagy. PPI and MCC algorithm identified 6 hub genes in regulating macrophage-related autophagy, and ROC indicated high prediction value (area under curve = 0.961). GSEA enriched 6 common pathways associated with autophagy and atherosclerosis pathogenesis, and immune correlation suggested these hub genes were correlated with macrophages M0/M1, monocytes and T cells. Then venn plot found 3 central genes in mediating macrophage autophagy-associated pyroptosis in atherosclerosis, and single-cell analysis demonstrated cell distribution, then validated in THPA human samples. Our data discovered hub genes responsible for macrophage autophagy-mediated pyroptosis in atherosclerosis, and functional analysis with immune cell distribution evidenced their high phenotype-trait prediction value.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available