4.8 Article

Discovery of deaminase functions by structure-based protein clustering

Journal

CELL
Volume 186, Issue 15, Pages 3182-+

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2023.05.041

Keywords

Discovery of deaminases; effective base editors; Therapeutic applications; Context; Agricultural applications; (robust soybean base editing)

Ask authors/readers for more resources

The elucidation of protein function and its exploitation in bioengineering have greatly advanced the life sciences. Protein mining efforts generally rely on amino acid sequences rather than protein structures. We describe here the use of AlphaFold2 to predict and subsequently cluster an entire protein family based on predicted structure similarities. We engineered the smallest single-strand-specific cytidine deaminase, enabling efficient cytosine base editor (CBE) to be packaged into a single adeno-associated virus (AAV). Importantly, we profiled a deaminase from this clade that edits robustly in soybean plants, which previously was inaccessible to CBEs. These discovered deaminases, based on AI-assisted structural predictions, greatly expand the utility of base editors for therapeutic and agricultural applications.
The elucidation of protein function and its exploitation in bioengineering have greatly advanced the life sciences. Protein mining efforts generally rely on amino acid sequences rather than protein structures. We describe here the use of AlphaFold2 to predict and subsequently cluster an entire protein family based on predicted structure similarities. We selected deaminase proteins to analyze and identified many previously unknown properties. We were surprised to find that most proteins in the DddA-like clade were not double stranded DNA deaminases. We engineered the smallest single-strand-specific cytidine deaminase, enabling efficient cytosine base editor (CBE) to be packaged into a single adeno-associated virus (AAV). Importantly, we profiled a deaminase from this clade that edits robustly in soybean plants, which previously was inaccessible to CBEs. These discovered deaminases, based on AI-assisted structural predictions, greatly expand the utility of base editors for therapeutic and agricultural applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available