4.7 Article

Chitin nanofiber-coated biodegradable polymer microparticles via one-pot aqueous process

Journal

CARBOHYDRATE POLYMERS
Volume 312, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2023.120828

Keywords

Chitin nanofiber; Nanochitin; Microparticles; Biodegradable; Cationic adsorbent

Ask authors/readers for more resources

Tailoring the surface of biodegradable microparticles is crucial for various applications in cosmetics, biotechnology, and drug delivery. Chitin nanofibers (ChNFs) have emerged as promising materials for surface modification due to their biocompatibility and antibiotic properties. In this study, we successfully coated cellulose acetate (CA) microparticles with ChNFs using a simple aqueous process, resulting in no significant changes in microparticle size or shape.
Tailoring the surface of biodegradable microparticles is important for various applications in the fields of cosmetics, biotechnology, and drug delivery. Chitin nanofibers (ChNFs) are one of the promising materials for surface tailoring owing to its functionality, such as biocompatibility and antibiotic properties. Here, we show biodegradable polymer microparticles densely coated with ChNFs. Cellulose acetate (CA) was used as the core material in this study, and ChNF coating was successfully carried out via a one-pot aqueous process. The average particle size of the ChNF-coated CA microparticles was approximately 6 & mu;m, and the coating procedure had little effect on the size or shape of the original CA microparticles. The ChNF-coated CA microparticles comprised 0.2-0.4 wt% of the thin surface ChNF layers. Owing to the surface cationic ChNFs, the & zeta;-potential value of the ChNF-coated microparticles was +27.4 mV. The surface ChNF layer efficiently adsorbed anionic dye molecules, and repeatable adsorption/desorption behavior was exhibited owing to the coating stability of the surface ChNFs. The ChNF coating in this study was a facile aqueous process and was applicable to CA-based materials of various sizes and shapes. This versatility will open new possibilities for future biodegradable polymer materials that satisfy the increasing demand for sustainable development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available