4.6 Article

Identification and evaluation in-vitro of conserved peptides with high affinity to MHC-I as potential protective epitopes for Newcastle disease virus vaccines

Journal

BMC VETERINARY RESEARCH
Volume 19, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12917-023-03726-w

Keywords

Epitope; Fusion; Hemagglutinin-neuraminidase; Newcastle disease virus; Peptide-based vaccine; Polymerase

Ask authors/readers for more resources

Our study used an artificial intelligence algorithm to predict NDV peptides with high affinity to chicken MHC-I complex. We selected conserved peptides across different NDV genotypes and absent in the chicken proteome. Five peptides with the highest affinities for L, HN, and F proteins of NDV were synthesized and evaluated for their ability to elicit cell-mediated immunity in-vitro.
Background Newcastle disease (ND) is a major threat to the poultry industry, leading to significant economic losses. The current ND vaccines, usually based on active or attenuated strains, are only partially effective and can cause adverse effects post-vaccination. Therefore, the development of safer and more efficient vaccines is necessary. Epitopes represent the antigenic portion of the pathogen and their identification and use for immunization could lead to safer and more effective vaccines. However, the prediction of protective epitopes for a pathogen is a major challenge, especially taking into account the immune system of the target species.Results In this study, we utilized an artificial intelligence algorithm to predict ND virus (NDV) peptides that exhibit high affinity to the chicken MHC-I complex. We selected the peptides that are conserved across different NDV genotypes and absent in the chicken proteome. From the filtered peptides, we synthesized the five peptides with the highest affinities for the L, HN, and F proteins of NDV. We evaluated these peptides in-vitro for their ability to elicit cell-mediated immunity, which was measured by the lymphocyte proliferation in spleen cells of chickens previously immunized with NDV.Conclusions Our study identified five peptides with high affinity to MHC-I that have the potential to serve as protective epitopes and could be utilized for the development of multi-epitope NDV vaccines. This approach can provide a safer and more efficient method for NDV immunization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available