4.8 Article

A novel fungal-algal coupling system for slaughterhouse wastewater treatment and lipid production

Journal

BIORESOURCE TECHNOLOGY
Volume 387, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2023.129585

Keywords

Penicillium; Chlorella; Fungal -algal coupling system; Slaughterhouse wastewater treatment; Lipid production

Ask authors/readers for more resources

A novel fungal-algal coupling system was developed for slaughterhouse wastewater treatment, which showed improved removal efficiency of pollutants compared to monoculture systems. The harvest efficiency of Chlorella sp. DT025 reached 99.79% with optimal cultivation conditions. The mechanism of microalgae harvest in the fungal-algal system was related to the characteristics of fungal cells and their secretions.
In this study, a novel fungal-algal coupling system was established for slaughterhouse wastewater treatment with Chlorella sp. DT025 and a new fungus, Penicillium sp. AHP141. With the optimization of cultivation conditions for the fungal-algal coupling system, the harvest efficiency of Chlorella sp. DT025 reached 99.79%. The mechanism of microalgae harvest of the fungal-algal system was revealed to be related to the morphological characteristics, surface charge, and the secretion of humic acid-like compounds and tryptophan on the surface of the fungi cells. For the original slaughterhouse wastewater treatment, the fungal-algal coupling system had a better removal efficiency of COD, TN, and TP than both monoculture systems. In the high-concentration artificial slaughterhouse wastewater, COD removal of the fungal-algal system reached more than 5350 mg/L. The lipid production of the fungal-algal coupling system in the high-concentration artificial slaughterhouse wastewater treatment was improved by 343.33% to 1.33 g/L compared to the microalgae monoculture treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available