4.8 Article

Exploration of the interaction mechanism of lignocellulosic hybrid systems based on deep eutectic solvents

Journal

BIORESOURCE TECHNOLOGY
Volume 385, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2023.129401

Keywords

Cellulose; Hemicellulose; Lignin; Deep eutectic solvent; Molecular dynamics

Ask authors/readers for more resources

The interactions between three deep eutectic solvents (DES) and cellulose-hemicellulose and cellulose-lignin hybrid systems were studied using a simulated computational approach. DES pretreatment can disrupt the original hydrogen bonding network structure among the lignocellulosic components and reconstruct the new DES-lignocellulosic hydrogen bonding network structure. ChCl-U exhibited the strongest effect on the hybrid systems, removing 78.3% of the hydrogen bonds between cellulose-4-O-methyl Gluconic acid xylan (cellulose-Gxyl) and 68.4% of the hydrogen bonds between cellulose-Veratrylglycerol-b-guaiacyl ether (cellulose-VG), respectively. The addition of appropriate water (DES:H2O = 1:5) and DES formed a new DES-water hydrogen bonding network structure that facilitated the interaction with lignocellulose.
The interactions of three deep eutectic solvents (DES) choline chloride-glycerol (ChCl-GLY), ChCl-lactic acid (ChCl-LA) and ChCl-urea (ChCl-U) with cellulose-hemicellulose and cellulose-lignin hybrid systems were investigated using the simulated computational approach. Aiming to simulate DES pretreatment of real lignocellulosic biomass in nature. DES pretreatment could disrupt the original hydrogen bonding network structure among the lignocellulosic components and reconstruct the new DES-lignocellulosic hydrogen bonding network structure. ChCl-U had the highest intensity of action on the hybrid systems, removing 78.3% of the hydrogen bonds between cellulose-4-O-methyl Gluconic acid xylan (cellulose-Gxyl) and 68.4% of the hydrogen bonds between cellulose-Veratrylglycerol-b-guaiacyl ether (cellulose-VG), respectively. The increase of urea content facilitated the interaction between DES and lignocellulosic blend system. Finally, the addition of appropriate water (DES:H2O = 1:5) and DES formed the new DES-water hydrogen bonding network structure more favorable for the interaction of DES with lignocellulose.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available