4.2 Article

Ultra-Fast Mass Spectrometry in Plant Biochemistry: Response of Winter Wheat Proteomics to Pre-Sowing Treatment with Iron Compounds

Journal

BIOCHEMISTRY-MOSCOW
Volume 88, Issue 9, Pages 1390-1403

Publisher

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0006297923090183

Keywords

plant proteomics; nanoparticles; bioinformatics; mass spectrometry

Ask authors/readers for more resources

In recent years, ultrafast liquid chromatography/mass spectrometry methods have been extensively developed for proteome profiling in biochemical studies. This study aimed to adapt these methods for quantitative profiling of molecular changes in wheat seedlings in response to seed treatment with iron compounds.
In recent years, ultrafast liquid chromatography/mass spectrometry methods have been extensively developed for the use in proteome profiling in biochemical studies. These methods are intended for express monitoring of cell response to biotic stimuli and elucidation of correlation of molecular changes with biological processes and phenotypical changes. New technologies, including the use of nanomaterials, are actively introduced to increase agricultural production. However, this requires complex approbation of new fertilizers and investigation of mechanisms underlying the biotic effects on the germination, growth, and development of plants. The aim of this work was to adapt the method of ultrafast chromatography/mass spectrometry for rapid quantitative profiling of molecular changes in 7-day-old wheat seedlings in response to pre-sowing seed treatment with iron compounds. The used method allows to analyze up to 200 samples per day; its practical value lies in the possibility of express proteomic diagnostics of the biotic action of new treatments, including those intended for agricultural needs. Changes in the regulation of photosynthesis, biosynthesis of chlorophyll and porphyrin- and tetrapyrrole-containing compounds, glycolysis (in shoot tissues), and polysaccharide metabolism (in root tissues) were shown after seed treatment with suspensions containing film-forming polymers (PEG 400, Na-CMC, Na2-EDTA), iron (II, III) nanoparticles, or iron (II) sulfate. Observations at the protein levels were consistent with the results of morphometry, superoxide dismutase activity assay, and microelement analysis of 3-day-old germinated seeds and shoots and roots of 7-day-old seedlings. A characteristic molecular signature involving proteins participating in the regulation of photosynthesis and glycolytic process was suggested as a potential marker of the biotic effects of seed treatment with iron compounds, which will be confirmed in further studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available