4.2 Review

Molecular electronics: an Australian perspective

Journal

AUSTRALIAN JOURNAL OF CHEMISTRY
Volume 76, Issue 9, Pages 559-580

Publisher

CSIRO PUBLISHING
DOI: 10.1071/CH23008

Keywords

electron transfer; electron transport; molecular devices; molecular electronics; molecular switches; nanotechnology; organic electronics; technology relevance levels

Ask authors/readers for more resources

Molecular electronics has been a scientific endeavor for 60 years, aiming to integrate or replace semiconductor electronics with molecules. This article reviews the historical developments in molecular electronics and focuses particularly on Australia's contributions in this field. It summarizes Australia's current research activities and highlights its capabilities in various scientific and technological aspects of molecular electronics.
Molecular electronics is a scientific endeavour that, for 60 years, has offered the promise of new technologies in which molecules integrate with, if not entirely replace, semiconductor electronics. En route to the attainment of these ambitious goals, central aspects underpinning the pursuit of this science have proven critical to the development of related technologies, including organic photovoltaics (OPV) and organic light-emitting diodes (OLEDs). Looking ahead, new opportunities in the field abound, from the study of molecular charge transport and the elucidation of molecular reaction mechanisms, to the development of biocompatible and degradable electronics, and the construction of novel chemical sensors with exquisite sensitivity and specificity. This article reviews historical developments in molecular electronics, with a particular focus on Australia's contributions to the area. Australia's current activity in molecular electronics research is also summarised, highlighting the capacity to both advance fundamental knowledge and develop new technologies. Scientific aspects considered include capabilities in: single molecule and molecular-monolayer junction measurement; spectroscopic analysis of molecular components and materials; synthetic chemistry; computational analysis of molecular materials and junctions; and the development of theoretical concepts that describe the electrical characteristics of molecular components, materials and putative device structures. Technological aspects considered include various aspects of molecular material design and implementation, such as: OPV and OLED construction, sensing technologies and applications, and power generation from heat gradients or friction. Missing capabilities are identified, and a future pathway for Australian scientific and technological development envisaged.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available