4.7 Article

Rapid Quenching of Galaxies at Cosmic Noon

Journal

ASTROPHYSICAL JOURNAL
Volume 953, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/1538-4357/acd54a

Keywords

-

Ask authors/readers for more resources

The study investigates the rapid quenching of young quiescent galaxies at high redshifts and identifies physical mechanisms involved. The results show that these galaxies experienced intense starbursts prior to rapid quenching and that AGN activity plays a role in some cases. Gas removal or depletion is observed in other galaxies, indicating a central starburst in the recent past. The study concludes that these galaxies are not only rapidly quenched but also formed through major starbursts, potentially driven by mergers and AGN feedback.
The existence of massive quiescent galaxies at high redshift seems to require rapid quenching, but it is unclear whether all quiescent galaxies have gone through this phase and what physical mechanisms are involved. To study rapid quenching, we use rest-frame colors to select 12 young quiescent galaxies at z & SIM; 1.5. From spectral energy distribution fitting, we find that they all experienced intense starbursts prior to rapid quenching. We confirm this with deep Magellan/FIRE spectroscopic observations for a subset of seven galaxies. Broad emission lines are detected for two galaxies, and are most likely caused by active galactic nucleus (AGN) activity. The other five galaxies do not show any emission features, suggesting that gas has already been removed or depleted. Most of the rapidly quenched galaxies are more compact than normal quiescent galaxies, providing evidence for a central starburst in the recent past. We estimate an average transition time of 300 Myr for the rapid quenching phase. Approximately 4% of quiescent galaxies at z = 1.5 have gone through rapid quenching; this fraction increases to 23% at z = 2.2. We identify analogs in the TNG100 simulation and find that rapid quenching for these galaxies is driven by AGNs, and for half of the cases, gas-rich major mergers seem to trigger the starburst. We conclude that these young massive quiescent galaxies are not just rapidly quenched, but also rapidly formed through a major starburst. We speculate that mergers drive gas inflow toward the central regions and grow supermassive black holes, leading to rapid quenching by AGN feedback.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available