4.7 Article

An experimental investigation on debris bed formation from fuel coolant interactions of metallic and oxidic melts

Journal

APPLIED THERMAL ENGINEERING
Volume 233, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2023.121186

Keywords

Fuel coolant interactions; Metallic melt; Oxidic melt; Melt jet fragmentation; Debris bed

Ask authors/readers for more resources

During severe accidents in a light water reactor (LWR), the core melt (corium) can relocate to the lower head and cause the reactor pressure vessel (RPV) to fail. Fuel coolant interactions (FCI) occur when the reactor cavity is flooded with water, and the energetics of FCI and the coolability of resulting debris bed are crucial for reactor safety. This study aims to quantify the characteristics of a debris bed resulting from FCI using various materials, and high-speed photography was used to visualize the process. The comparative results provide insights into debris bed characteristics under different melt materials and compositions.
During postulated severe accidents in a light water reactor (LWR), the core melt (corium) may relocate to the lower head and fail the reactor pressure vessel (RPV). The corium is expected to undergo fuel coolant interactions (FCI) if the reactor cavity is flooded with water. Both FCI energetics and resulting debris bed coolability are of paramount importance to reactor safety, since the ex-vessel corium poses a threat to the containment integrity if steam explosion occurs or the debris bed is uncoolable, leading to release of radioactive fission products to the environment. The present study is intended to quantify the characteristics of a debris bed resulting from FCI, which are crucial to debris bed coolability. Different from the previous studies with only oxidic materials, various materials, including metallic ones of Sn, Sn-Bi and Zn as well as oxidic one of Bi2O3-WO3, were employed as the simulants of corium (mixture of UO2/ZrO2/Zr/Fe) in the present study to investigate the effects of melt materials, melt superheat and coolant subcooling on debris bed formation in a water pool. High-speed photography was applied to visualize melt jet breakup, droplets fragmentation, as well as fragments sedimentation on the pool floor. Other obtained data are debris bed shape (profile) and porosity, as well as morphology and size distri-bution of debris particles. The comparative results of various tests provided insights toward filling the knowledge gap on debris bed characteristics under different melt materials and compositions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available