4.6 Article

High external quantum efficiency monolayer MoS2(1-x)Se2x phototransistor with alloying-induced near-infrared absorption

Journal

APPLIED PHYSICS LETTERS
Volume 123, Issue 15, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0165117

Keywords

-

Ask authors/readers for more resources

This study engineered the optical properties of MoS2 by alloying with Se, extending its optical absorption to the near-infrared (NIR) region. Phototransistors based on this alloyed monolayer MoS2(1-x)Se2x exhibited high photoresponsivity and external quantum efficiency. Density functional theory calculations provided insight into the mechanism of near-infrared absorption.
Due to intriguing electrical and optical properties, two-dimensional MoS2 has gained significant attention and emerged as a promising material in photonic and optoelectronic fields. Nevertheless, the intrinsic optical absorption of monolayer MoS2 is limited in the visible region only, restricting applications toward near-infrared (NIR) photodetection. Herein, we engineered the optical properties of MoS2 via alloying with Se to extend its optical absorption to the NIR region, and the phototransistor was fabricated based on monolayer MoS2(1-x)Se2x (x = similar to 0.1). When under 780 nm (similar to 1.59 eV) illumination, the device delivered a photoresponsivity of 75.38 A/W, a specific detectivity of similar to 10(12) Jones, and an external quantum efficiency up to 11 230%. Additionally, it was revealed by density functional theory calculations that NIR absorption originated from the transition of valence states of sulfur vacancy (Vs) interband energy states between +1 and 0, providing an interband energy level of 1.58 eV away from the conduction band minima. Moreover, alloying of Se can suppress deep-level defects formed via Vs, further boosting device performance. This work has demonstrated high-performance NIR phototransistors based on ternary monolayer MoS2(1-x)Se2x, providing both a viable solution and fundamental mechanisms for NIR-blind MoS2 with extended optical absorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available