4.6 Article

Impact of fin aspect ratio on enhancement of external quantum efficiency in single AlGaN fin light-emitting diodes pixels

Journal

APPLIED PHYSICS LETTERS
Volume 122, Issue 26, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0149658

Keywords

-

Ask authors/readers for more resources

In this study, we investigate the impact of the fin aspect ratio on the external quantum efficiency (EQE) and UV emission of AlGaN fin/p-GaN heterojunctions. With decreasing aspect ratio, the UV emission of the fins increases and EQE is enhanced by 7 times. This can be attributed to the conservation of the volume of the carrier depletion region within a fin.
Previously, we showed within a sub-micron fin shape heterojunction, as current density increases, the non-radiative Auger recombination saturates mediated by the extension of the depletion region into the fin, resulting in a droop-free behavior. Here, we investigate the dependence of the fin aspect ratio (height to width ratio) on external quantum efficiency (EQE) of single n-AlGaN fin/p-GaN heterojunctions. Fins are arranged in an array format varying in width from 3000 to 200nm. In this architecture, an n-metal contact is interfaced with the non-polar side facet of the fin. At a fixed current density, as the aspect ratio increases from 0.2 to 3 (the fin width reduces), we systematically observe an increase in the ultraviolet (UV) excitonic emission of the AlGaN fin and a 7x enhancement in the EQE. We explain this phenomenon by conserving the volume of the carrier depletion region within a fin. As the fin gets thinner, the base area of the depletion volume shrinks, whereas its height increases within the fin. This geometrical advantage allows a 200nm wide fin to operate at 1/3rd the current density compared to a 3000nm wide fin while generating a UV emission with a comparable power of 1 mu W. These findings show additional parameters that can be used for developing brighter light sources, including the shape and aspect ratio of a heterojunction at the micro- or nano-scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available