4.8 Article

Atypical stability of exsolved Ni-Fe alloy nanoparticles on double layered perovskite for CO2 dry reforming of methane

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 328, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2023.122479

Keywords

Coking resistant; Dry reforming of methane; Exsolution; Ni-Fe alloy; Perovskite oxide

Ask authors/readers for more resources

The dry reforming of methane achieves sustainability goals by activating carbon dioxide and producing syngas. The catalyst plays a crucial role in controlling the process's activity, selectivity, and stability. A one-step reduction strategy is used to assemble a catalyst with uniform-sized Ni-Fe alloy nanoparticles. The catalyst shows exceptional stability and inhibits coke formation.
Dry reforming of methane simultaneously achieves several sustainability goals: valorizing methane-activating carbon dioxide while producing syngas. The catalyst has an enormous influence on the process viability by controlling activity, selectivity, and stability. A catalyst with uniform-sized Ni-Fe alloy nanoparticles anchored into PrBaMn1.6Ni0.3Fe0.1O5+delta double-layered perovskite is assembled via a facile one-step reduction strategy. Our method attains more exsolved Ni nanoparticles (94 %) than the common conditions. The exsolved Ni0.15Fe0.05 catalyst shows exceptional stability in 260 h tests at 800 degrees C, with one of the slowest coke formation rates compared with the state-of-the-art catalysts. Besides, no deactivation was observed during 40 h operation at more demanding and coking conditions (14 bar) where this process is more likely to operate industrially. Via experimental characterizations and computational calculations, the stability of the robust exsolved Ni-Fe catalyst is demonstrated by its unique balance of adsorbed species, which inhibits coking.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available